
Coasys Whitepaper
Collective Intelligence > Artificial Intelligence

Nicolas Luck, Tomis Paker, Joshua Parkin,
Leif Riksheim, Eric Yang

28th of July 2023

v1.4

Coasys whitepaper 1

Abstract 3

Addressing our broken information system 5

ADAM Layer 8

Web-B: The Application of ADAM 27

Synergy Engine 32

SynergyFuel 40

Funding Campaign 46

Milestones 50

Financial Sustainability 52

Company / Team 53

Acknowledgements 56

Coasys whitepaper 2

Abstract
Coasys offers a contribution to the public’s capacity to sense-make as a

collective by providing the infrastructure for an open, interoperable web, a
collaboratively curated knowledge graph, as well as the tools to improve our
ability to find and share reliable information and coordinate effectively at any
scale or complexity. By doing so, it tries to approach the meta-crisis with
pragmatic technological upgrades to our society's digital communication
infrastructure.

More and more people recognise the fact that our civilisation’s ability to
find true statements about complex issues is surprisingly low and potentially
decreasing as systemic incentives promote the use of communication
primarily to shape opinions of others in order to advance personal, financial,
or political agendas. The advent of powerful AI through the recent
breakthroughs of LLMs will likely exacerbate this problem, as realistic looking
fake-news can be manufactured at low cost.

Decentralised cryptographic technologies give reason for hope since
cryptographic signatures introduce a base-layer of data integrity and
provenance. But for proper integrity management of complex semantic data,
more than just basic cryptography or blockchains are needed. With
Holochain—a technology that enables complex data-integrity mechanisms—
distributed sense-making networks are now possible.

Over the last 3 years, the team behind Coasys has been building the
ADAM Layer, which extends Holochain’s agent-centric distributed software
architecture into a novel internet layer. The ADAM layer enables a new
interoperable web with social networking capacities where people have the
ability to share and collaborate on semantic graphs (called Perspectives),
independently of specific apps or base-layer technologies (like Holochain,
blockchains, or central databases). Alongside and on top of the ADAM layer,
the community platform Flux was built by the Coasys team which enabled us
to test, prove, and iterate the groundbreaking ideas in ADAM.

Now, Coasys turns the ADAM network (and each app built on ADAM) into
a sense-making tool by tapping into the network’s collective intelligence. We
introduce Synergy Fuel: a Holochain-based mutual-credit currency backed by
the network's capacity to provide trustworthy information based on real
human connection and trust. This is a perfect application of ADAM’s
technology-independent semantic “Perspectives” and its concept of "Social
DNA", as well as Holochain’s powerful, scalable and customisable validating
DHTs. With Coasys, users will be able to define simple or complex data

Coasys whitepaper 3

queries by describing the properties of the desired results with ADAM’s
Social DNA. We have successfully prototyped the use of LLMs for the
creation of Social DNA, which will provide users a simple way to create new
queries with complex rules. SynergyFuel’s main currency feature will be
vaults where users lock-in currency units as reward for providing a result to
their query. Using Holochain’s distributed validation mechanism, only
matching result-Perspectives will be able to unlock the provided funds in a
decentralised fashion. Included in these results will be the “social stack”, i.e.
the path the query took through the network of agents. Queries can define
what portions of the reward will be released for what role—that is, per hop
through the social graph, as well as for the agent who ultimately delivers the
result. Thus, SynergyFuel will be constructed as a currency coupled to, and
incentivising both, the relaying of queries of others to the agent’s trust-
network, as well as responding with the sought after information.

The resulting system will be a fully decentralised search and synergy
engine for semantic data. Being built on top of the ADAM layer, which allows
existing Web 2.0 and Web3 platforms to be plugged in as data-storage layers
(wrapped as ADAM “Languages”), the synergy engine works with data stored
across all lower technology layers. ADAM Perspectives serve as semantic
overlay graphs that associate data stored across the internet in various
servers, blockchains, and Holochain DHTs. ADAM makes it possible to build
distributed, agent-centric apps on Holochain and other network technologies
which can have their unique value proposition completely independent from
Coasys and this semantic search engine. Users of these apps, being in full
control of their data, can choose to participate in these semantic searches by
offering specific data (or all of it) and use their data to earn SynergyFuel.

In order to sustain the development of the ADAM layer, Flux and other
ADAM apps, and to begin building Coasys and SynergyFuel within a non-
profit, open source context, we are conducting a pre-sale of SynergyFuel
units. This document describes the underlying technological innovations,
mainly the ADAM layer, the first apps built on ADAM, the mechanics of the
query engine, the SynergyFuel currency, and the structure of the pre-sale.

Coasys whitepaper 4

Addressing our broken information system

In today's interconnected world, the ability to make sense of complex
issues is crucial for individuals, communities, and organisations to navigate
an increasingly volatile and uncertain landscape. However, the current state
of our information ecosystem presents significant challenges for effective
sense-making, as it is inundated with misinformation, disinformation, and
commercial and political interests. This compromised environment has far-
reaching implications for the potential for constructive dialogue, meaningful
collaboration, and our relationships with one another.

The complexity of modern challenges requires a collective approach to
sense-making that can accommodate multiple perspectives and foster a
shared understanding of the problems we face. As the global issues we face
become increasingly urgent, the need for accurate information and effective
sense-making has never been more critical. Unfortunately, the current
information landscape is not conducive to these objectives, with numerous
factors contributing to the breakdown of sense-making:

a) Information Overload: While the abundance of information has its
benefits, it has also made it difficult for individuals to process and discern the
credibility of the vast amount of content they encounter daily.

b) Proliferation of Misinformation and Disinformation: The internet has
made it easier than ever for bad actors to intentionally spread misleading
information, exploit cognitive biases and prey on emotions.

c) Echo Chambers and Filter Bubbles: Social media algorithms prioritise
engagement, which can lead to the formation of echo chambers, filter
bubbles, and the reinforcement of existing beliefs.

d) Erosion of Trust in Traditional Information Sources: The rise of the
internet has revealed that traditional news and media outlets can be
influenced by financial incentives, political pressures, personal biases, and
even outright corruption as the Twitter files have demonstrated.

There have been attempts to address the breakdown of sense-making
through centralized technology solutions. However, these systems not only
perpetuate the issues related to trust and reliability but also create new
vulnerabilities and limitations. Here's how:

a) Centralisation of Power and Control: Centralised platforms own and
gate-keep our digital identities and data, making it easier to manipulate,
censor, and control what is being disseminated.

Coasys whitepaper 5

b) Censorship and Surveillance: Since information is stored and
distributed by a handful of centralised entities, it is much easier for
governments and the platforms themselves to censor or track individuals.

c) Susceptibility to Misinformation and Disinformation: Centralised
systems are inherently more vulnerable to the spread of false or misleading
information, as they rely on a limited number of sources and gatekeepers.

d) Monetization and Manipulation of User Data: Many centralized
platforms generate revenue through targeted advertising, which relies on the
collection and analysis of vast amounts of user data. This monetization model
not only compromises user privacy but also incentivizes the platforms to
manipulate user behavior and information exposure to maximize profits,
further eroding trust in the information ecosystem.

e) Scalability and Security Concerns: Centralized systems are more
susceptible to single points of failure, both in terms of technical
infrastructure and the potential for bad actors to compromise the system. As
these platforms grow in size and complexity, they face increasing challenges
in maintaining security, reliability, and performance.

In this context, addressing the broken sense-making ecosystem is of
paramount importance. It requires the development of new mechanisms and
platforms that can ensure the integrity of information and promote a more
transparent and accountable information ecosystem. By empowering
individuals to access, share, and verify information through decentralized
and agent-centric networks, where cryptographic signatures and provenance
of data are inherent, we can foster a renewed sense of trust in the
information landscape and pave the way for more meaningful and effective
collective discourse, sense-making, and action.

Why an agent-centric network can be a solution

Agent-centric networks offer a promising alternative to centralized
technology solutions. By empowering individuals to take control of their data
and interactions, these decentralized systems create a more transparent,
reliable, and resilient foundation for collective sense-making. Some key
reasons why agent-centric networks can serve as a solution include:

1. Cryptographic Signatures and Data Provenance: In an agent-
centric system, all information is cryptographically signed, providing an
intrinsic provenance of who expressed the data and when. This feature
adds a layer of trust and accountability to the information ecosystem, as
it allows users to verify the source of data and ensure its authenticity,
reducing the likelihood of misinformation and manipulation.

Coasys whitepaper 6

2. No Implied Objectivity: Agent-centric networks acknowledge that
there is no single "objective truth" in the information ecosystem.
Instead, they recognize that there are fundamentally different
perspectives held by different agents. By embracing this diversity of
viewpoints, agent-centric systems foster a more nuanced
understanding of complex issues and enable more effective collective
sense-making.
3. Decentralized Authority and Control: Unlike centralized platforms,

agent-centric networks distribute authority and control among all
participants, reducing the potential for manipulation, censorship, and
control by a few powerful entities. This decentralization allows for a
more democratic and inclusive information ecosystem, in which diverse
perspectives can be shared and considered equally.
4. Enhanced Privacy and Security: By giving users control over their

data and interactions, agent-centric networks provide greater privacy
and security. Users can choose what information they share and with
whom, while cryptographic signatures help ensure the integrity and
authenticity of the data. Additionally, decentralized systems are more
resilient to single points of failure, resulting in a more robust and secure
information infrastructure.
5. Censorship and Surveillance Resistant: Agent-centric networks

are inherently resistant to censorship and surveillance as users retain
full ownership over their data, identity, and interactions.
6. Human-centered Design: The emergence of new revenue models

that are not incentivized by the need to maximize user attention and
engagement could lead to healthier design patterns.
7. Support for Diverse Perspectives and Synthesis: Agent-centric

networks facilitate the sharing and synthesis of various perspectives,
enabling users to gain a more comprehensive understanding of
complex issues. By incorporating diverse viewpoints, these systems
encourage collective sense-making and foster a more informed and
engaged user base.

By adopting agent-centric networks as the foundation for our
information ecosystem, we can transform the way we access, share, and
interpret information, promoting more effective collaboration and
understanding across diverse perspectives and communities.

Coasys whitepaper 7

ADAM Layer
ADAM, an acronym for Agent-centric Distributed Application Meta-

Ontology, is a paradigm-shifting innovation designed to transform the way
we interact with the digital world by bringing it closer to the natural
dynamics of human communication. Regarded as a layer on top of the
existing internet (TCP/IP) layers, ADAM aims to bridge the gap between
various applications and technologies, fostering seamless collaboration, data
sharing, and interoperability across diverse platforms and between agents
(humans), directly.

The agent-centric nature of ADAM allows humans to communicate with
one another, independent of the app or technology they use. By wrapping
these technologies as "Languages," ADAM enables users to exchange
semantic statements as associations in semantic graphs, here called
"Perspectives," effectively exchanging contextual meaning and facilitating
richer interactions. This approach aligns more closely with the way humans
naturally communicate, creating the basis for a more intuitive and
meaningful digital experience, without implying or assuming a specific
semantic, interaction pattern or underlying technology.

ADAM is not only a spanning layer that connects different technologies
but also serves as an application development framework, empowering
developers to build a wide range of applications with greater flexibility and
interoperability. As a meta-ontology, ADAM provides the foundation for
seamless integration between diverse apps and networks, paving the way for
a more unified and coherent digital landscape.

By implementing the ADAM layer, we can move towards a more
interconnected, human-centric digital ecosystem that supports meaningful
communication and collaboration—ultimately unlocking the full potential of
our digital experiences, without locking users into one specific platform,
network, technology, or app.

Coasys whitepaper 8

Agent-centric Spanning Layer

ADAM is (like the IP layer in TCP/IP) a spanning layer—but an agent-
centric spanning layer. As such, it is a unique approach to connecting diverse
applications, user interfaces (UIs), and networks through the central role of
the agent, i.e. the human user. This means users can mix and re-mix
Languages inside Perspectives and use these remixes within various ADAM
apps (I.e. user interfaces built on top of ADAM and ADAM Perspectives).

The primary benefit of an agent-centric spanning layer is the ability to
facilitate seamless communication and collaboration among users,
regardless of the specific applications, technologies or ways of expressing
they choose. By placing the user at the centre of the digital ecosystem, this
spanning layer enables users to connect, interact with each other, and share
information across various platforms, breaking down barriers that often exist
between disparate technologies. It also allows new technologies to emerge
without suffering the “cold start” problem where no users exist on that
network, since it can inherently be used within an integrated data context,
and leaned on more and more as users see its benefits without having to
switch their entire operating context and data.

Another advantage of an agent-centric spanning layer is the increased
flexibility it offers for application development. Developers can build
applications that leverage the unique properties of different networks and
data storage technologies, while still ensuring that their users can effectively
communicate and collaborate with others across the network. This flexibility
allows for the creation of more innovative and versatile applications that
better serve the needs of their users.

Coasys whitepaper 9

In short: as a spanning layer, ADAM allows many-to-many mappings
between apps/UIs on one side and Expression Languages with their choice of
storage and distribution technologies on the other. It carves out the core
aspects of social networks (users and their relationships) and
provides that in a neutral, quintessential, and reusable form.

Base Ontology Classes: Agents, Languages, Perspectives

To achieve that level of interoperability, composability and evolvability,
the ADAM layer introduces a base ontology composed of three primary
classes: Agents, Languages, and Perspectives. These classes serve as the
foundation for building a semantic, interoperable and evolvable digital
ecosystem. Let's dive into each of these base ontology classes in more detail.

1. Agents: In the context of the ADAM layer, an agent refers to the
individual user that participates in the digital ecosystem. Agents are
responsible for creating, sharing, and interacting with information
across the network. ADAM uses the W3C’s DID standard, providing
agents with their own sovereign digital identity. ADAM then uses the
public-private key pair of that DID to cryptographically sign and verify
the data agents create, ensuring that the provenance of the information
is intrinsically linked to its originator. Agents can resolve the DID URI of
other agents and receive an agent expression that includes:

a) the resolved agent’s Public Profile Perspective—a built-in way for
agents to provide public information about themselves in the form of a
semantic website, and,
b) The agent’s Direct Message Language—an ADAM Language

chosen by the agent to receive direct messages in. By having the
agent provide this Language, they can choose the implementation of
their inbox (Holochain DHT, email server, custom REST API, etc..)

2. Languages: Languages in the ADAM layer represent
ways for users to express themselves. A Language is
both the class and the storage mechanism of its
Expressions. Languages encapsulate the actual
technology used to communicate, like Holochain, IPFS,

Agent(DID) = {prof ile : Perspective
directMessage : Language

Coasys whitepaper 10

blockchains, centralized APIs, etc. Expressions are always created, and
thus signed, by an agent. Languages map expression addresses to their
actual data:

As such, Languages implement the objective part in the ADAM layer:
every agent should get the same expression data for a given address.
By abstracting these underlying technologies into Languages, the
ADAM layer enables agents to seamlessly interact with information
stored across various systems without being restricted by the specific
implementations of those technologies. Encapsulation into Languages
provides a means to bridge various data storage and integrity
technologies, protocols, and applications within the agent-centric
distributed application meta-ontology. To ensure compatibility and
interoperability across the ADAM ecosystem, the implementation format
of ADAM Languages was chosen to be both flexible, standardised, and
simple: EcmaScript Modules.

The ADAM runtime includes a JavaScript/EcmaScript engine to execute
sandboxed Language code. ADAM defines a few specialised Language
interfaces for specific purposes (see Link Languages below and
appendix or the ADAM documentation), but the main Language
interface is as simple as the mapping from Expression address to
Expression content.

Language sandboxes have network access so Languages can be used
to wrap all kinds of networked services. The ADAM runtime also makes
available its included Holochain conductor to the Language runtime so
that Languages can easily include Holochain DNAs/hApps, register
those with the ADAM runtime for installation, and then call zome
functions easily. As ADAM evolves, we plan to include further
decentralised nodes within the ADAM runtime through a plugin-system,
to make the development of Languages for these networks easier. Using
hosted nodes, like those provided by Infura for instance, already allows
for the wrapping of Blockchain services within ADAM Languages.

3. Perspectives: Perspectives in the ADAM layer are semantic graphs,
i.e. contexts that associate Expressions (of arbitrary
Languages) with each other through Links (similar to RDF
triplets). Perspectives always start as private and local
to the agent holding it. Each Perspective is a collection
of semantic statements that represent an agent's unique

Languagei : Addr → {Expressioni}

Coasys whitepaper 11

view or understanding of a particular topic or domain—it can be
regarded as a subjective graph over objective Expressions. Perspectives
are the fundamental building-block of AD4M apps, to which they are
like a local graph database to store the domain-logic state through
meaningful links.
Technically, Perspectives are just graphs, represented as lists of link
expressions (links with provenance):

In conclusion, the base ontology classes of Agents, Languages, and
Perspectives form the core building blocks of the ADAM layer. These classes
enable (by recombination as we will see below) the creation of a semantic
and interoperable digital ecosystem that promotes seamless communication,
collaboration, and sense-making across different applications and
technologies.

ADAM Expression URIs

ADAM defines a super-set of URIs by mapping Languages to URI
schemas. The default case for URLs is treating every ADAM Language as a
URL schema with the Language’s address (=hash) as the schema-string and
then leaving everything but the schema for the Language to resolve:

<language address>://<expression sub-address>

This creates a way of globally addressing Expressions in different
Languages with backwards-compatibility for existing http/https URLs.
Together with a built-in aliasing mechanic that allows for mounting of a
Language under a given schema, especially https, Perspectives can integrate
data from the already existing Web 1 and 2.0 next to distributed Web3
storages. Put differently: URLs like https://ad4m.dev are valid ADAM
Expression URLs with the HTML document behind this link being the data of

Perspective = {l ∣ l ∈ LinkExpression}

LinkExpression =

source ∈ URI
predicate ∈ URI

target ∈ URI
author ∈ DID

timestamp ∈ Date
proof ∈ Signature

Coasys whitepaper 12

https://ad4m.dev

that Expression. It is just a matter of registering ‘https’ as a special language
in the ADAM runtime. The same holds for DID URIs, which get routed to the
Agent bootstrap language.

Bootstrapping with core Languages

Next, we apply the concept of ADAM Languages to the concepts of the
meta-ontology itself. This self-recursive trick will spawn a network that has a
high degree of evolvability, as we will see in following sections.

The resulting ADAM Languages are called Bootstrap languages since
their immediate function is to bootstrap an ADAM agent instance into the
evolvable ecosystem that the ADAM layer spawns through its ontology. As
long as an ADAM implementation comes with this set of bootstrapping
Languages, it will be able to discover other agents, their public Perspectives
and the Languages they are “speaking”, and thus join the collective.

The minimal core of bootstrap Languages include one Language for each of
the ontology’s base entities:

1. Language of Agents: which maps DID names like
did:key:zQ3shSKjGQKHSLhVLsTMwJDCrzcWoT6cyhMW4qSgnZ4WbEpLw
to Agent Expressions as defined in the core ontology above. This is a
public space for every agent to publish information about themselves
which other agents can retrieve just by resolving a DID name.

2. Language of Languages: which maps Language addresses/hashes to
the Language source code and meta data. New Languages developed by
users can and should be published as Expressions in this Language such
that other users can resolve and download Language hashes and install
new Languages as they go. Using the concept of Languages and
Expressions on itself adds provenance to shared Language source code.
ADAM uses that when encountering and trying to resolve Expressions of
new/unknown Languages (in Perspectives shared by others). Resolving
these expressions means downloading the source code of that new
Language from this “Language of Languages” and installing it. This will
only happen automatically if trust in the provenance of that source code
can be established—either because the author is a trusted agent (see
below) or the Language is a parameterised clone of a trusted Language
template (see appendix).

Coasys whitepaper 13

3. Language of Perspectives: which stores Perspectives as immutable
snapshots to allow for Perspectives referencing Perspectives and build
more complex semantic graphs with Perspectives as building-blocks.

ADAM runtime and interface

While the principles of ADAM as a meta-ontology can be applied across
various implementations to foster interoperability, we have taken the initiative
to create a complete runtime environment to actualise the potential of
ADAM. This runtime environment is packaged as a launcher, which keeps the
ADAM executor running in the background, ensuring that the agent-centric
network is constantly active and available.

One of the essential aspects of the ADAM runtime is the ADAM
interface, which has been built using GraphQL. This choice provides an
interoperable, efficient, and flexible means of structuring and retrieving data
and remote-control parts of the ADAM runtime (from UIs and apps), which is
crucial for the kind of complex, semantically rich interactions that ADAM
enables. Additionally, to ensure the security and integrity of data and
interactions, the ADAM interface is fortified with a capability-based security
scheme. This approach ensures that only authorised agents can perform
specific actions, providing a robust and secure framework for agent-centric
interactions.

To further facilitate the use of ADAM and its implementation, we have
created client libraries in JavaScript and Rust. These libraries allow user
interfaces to utilize ADAM as their persistence layer, streamlining the
integration of ADAM's capabilities into various applications, or deployments.
We envision in the future that ADAM could be deployed on distributed cloud
hosting networks such as Holo, or run on your own private server. Since all
your ADAM data is stored in a single directory, it is simple to move between
different hosting mechanisms without losing data, or even use multiple at
once with syncing setup between these deployments.

As will be shown in the coming sections, we have also developed
tooling, especially related to Social DNA, offering an ergonomic way for app
developers to define their app-specific ontology based on ADAM's meta-
ontology. This allows developers to create apps that are inherently
interoperable, further promoting the vision of an interconnected, agent-
centric web. Through the ADAM runtime and interface, we are making it
easier for developers and users alike to harness the power of ADAM, fostering
a more robust, diverse, and user-centric internet ecosystem.

Coasys whitepaper 14

Neighbourhoods: Shared Perspectives and Group Collaboration

In the ADAM framework, Neighbourhoods are an essential component
that serve as shared Perspectives. A Perspective, as we've discussed earlier,
is the individual viewpoint of an agent—a subjective lens through which they
perceive and associate objective Expressions to form and represent
meaningful connections, represented as overlay graphs over the Expression
of various ADAM Languages. These Perspectives can get shared in a
collaborative and dynamic way among a group of agents. We then refer to this
collective space as a Neighbourhood.

A Neighbourhood, therefore, is a dynamic, shared context where a group
of agents interact and communicate subjective associations. Agents within a
Neighbourhood maintain a local Perspective that is entangled with the
Perspectives of the other members. This entanglement allows for the
seamless synchronisation of changes within the group, thus fostering a
coherent shared context. ADAM apps/UIs interface with Neighbourhoods like
they do with local Perspectives—adding and retrieving triples/links.

This synchronisation is facilitated by a specific ADAM Language known
as a Link Language. The contents of Perspectives, and by extension
Neighbourhoods, are Links—semantic statements that form the fundamental
building blocks of these shared contexts. These Link Languages exchange
LinkExpressions (Expressions that represent Links) between agents. The
usage of these LinkLanguages in the context of Neighbourhoods happens
transparently to ADAM users/UIs, once setup.

Neighbourhoods can be created by any agent from any local
Perspective. They are represented by Expressions in another bootstrap
Language (i.e. Neighbourhood Bootstrap Language). This Language is
aliased to the URL schema 'neighbourhood', which means that each
Neighbourhood is addressable by a unique URI like “neighbourhood://
Qm123abcd". Agent’s can join Neighbourhoods through such URLs. The
Expression data behind that URL includes the address of the LinkLanguage
that forms the backbone of the Neighbourhood, and a “meta” Perspective
which can hold arbitrary meta information about this Neighbourhood:

Coasys whitepaper 15

With the Neighbourhood Language being public, this information about
Neighbourhoods is publicly accessible for given Neighbourhood URIs.
Wether an agent can join a Neighbourhood is determined by the chosen Link
Language implementation. This can entail any kind of logic to reason about
the agent to join. In the context of Holochain this would be the agent-
validation, or membrane proof.

After resolving the Neighbourhood URI and receiving an Expression (see
above format), the LinkLanguage can be downloaded from the Language of
Languages and installed—granting the new agent access to the shared link
data within the Neighbourhood, if they pass the Link Language’s membrane
validation.

Link Languages are Languages in which the Expressions are Link
Expressions with additional interface functions that ADAM defines for Link
Languages in order to enable proper CRDT-like synchronisation and push
dynamics when other agents share changes to the shared Perspective:

/** Interface for "Link Languages" that facilitate the synchronization
 * between agents' local Perspectives inside a Neighbourhood.
 * The assumption is that every version of the shared Perspective
 * is labeled with a unique revision string.
 * Changes are committed and retrieved through diffs.
 * Think of a LinkSyncAdapter as a git branch to which agents commit
 * their changes to and pull diffs from their current revision
 * to the latest one.
 */
export interface LinkSyncAdapter {
 writable(): boolean;
 public(): boolean;
 others(): Promise<DID[]>;

 /** What revision are we on now -> what changes are included in output of render() */
 currentRevision(): Promise<string>;

 /**
 * Check for and get new changes,
 * notify others of local changes.
 * This function will be called every
 * few seconds by the ad4m-executor.
 * */
 sync(): Promise<PerspectiveDiff>;

 /** Returns the full, rendered Perspective at currentRevision */
 render(): Promise<Perspective>;

 /** Publish changes */
 commit(diff: PerspectiveDiff): Promise<string>;

 /** Get push notification when a diff got published */
 addCallback(callback: PerspectiveDiffObserver);

 /** Add a sync state callback method */
 addSyncStateChangeCallback(callback: SyncStateChangeObserver);
}

NeighbourhoodExpression =

linkLanguage ∈ LanguageAddress
meta ∈ PerspectiveSnapshot

author ∈ DID
timestamp ∈ Date
proof ∈ Signature

Coasys whitepaper 16

When a community or group of agents create a new Neighbourhood,
they choose the specific Link Language implementation they want to use.
This choice determines the technological base-layer for their communication
infrastructure, allowing communities to customise their Neighbourhood
according to their needs. We have developed a working Link Language
implementing a git-like graph of change-sets, built on Holochain—offering a
robust, decentralised platform for the creation and maintenance of
Neighbourhoods.

In summary, Neighbourhoods in ADAM provide a flexible, secure, and
user-controlled framework for group collaboration. By facilitating shared
Perspectives among agents, Neighbourhoods enable meaningful,
interconnected communication within a diverse range of contexts. ADAM
Neighbourhoods are generic group collaboration contexts which allow
their members to setup the group once, but compose and recompose
application user interfaces and underlying Languages (networks and tech-
stacks) within the life-time of that virtual group context.

Social DNA: a language for semantic interaction patterns

In ADAM's approach towards interoperability, Social DNA plays a vital role
in establishing common semantic patterns across different applications used
within the same Neighbourhood. This common semantic language,
expressed in the form of Prolog predicates, describes graph patterns that
different applications are interested in.

There is a conceptual relationship between ADAM Social DNA and ADAM
Languages: objective and subjective aspects of data are distinctly handled
through the use of ADAM Languages and Social DNA, respectively. ADAM
Languages are used to encapsulate objective facts, while Social DNA enables
the coherence of subjective nuances within the shared semantic graph in
order to establish inter-subjective patterns and data-structures.

Let's delve into this distinction through an example involving two
applications: a social media application for creating posts with comments,
and an event/calendar application:

Consider an event that's created using an ADAM Language specifically
designed for events. An event, as an objective Expression, possesses certain

Coasys whitepaper 17

properties such as date, time, and place. These attributes are the same for all
agents, regardless of their perspectives or the Neighbourhoods they belong
to (the event Language will resolve a given URI to the same data,
independent of the agent's context).

However, subjective aspects of this event, such as comments shared
about the event within a particular Neighbourhood or an individual's intent to
attend, would better be represented by links within a Perspective (or
Neighbourhood). The Social DNA used in a Neighbourhood can describe
these subjective graph patterns, enabling different applications to interact
with the shared semantic graph in an interoperable way.

So, let's say that within our Neighbourhood, someone comments on the
event, suggesting a casual meet-up. Following the Social DNA for posts that
was installed in our Neighbourhood prior, this comment would be captured as
an association or a link from the event base, using the predicate "post://
has_comment". Even though the base data is an event, it can now be
interacted with and understood as a 'post' within the context of the social
media app, thanks to the addition of these associations.

In this way, the most basic application of what ADAM defines as Social
DNA is very similar to the W3C’s SHACL Shapes Constraint Language:
defining constraints to match semantic graphs against, in order to find/detect
meaningful structures. There is more to ADAM's Social DNA as we will see in
several sections below.

But first—some practical details to ground this discussion of SDNA in
reality.

The ADAM runtime spawns a Prolog engine for each Perspective and
provides access to apps/UIs via the client library’s infer method:

 let results = await perspective.infer(
 `triple("${base}", “post://has_comment", Comment)`.
)

This will run the given Prolog query

triple(<base>, “post://has_comment", Comment)

binding the free variable Comment to expression URIs that are linked from
a given base with the predicate post://has_comment. When setting up the
Prolog engine for a perspective, the ADAM runtime feeds all links of that

Coasys whitepaper 18

post://has_commet
post://has_commet

perspective into the Prolog engine as facts—both in a short form with the
predicate triple/3 which associates source, predicate and target of a link,
as well as the full link/5 predicate which also includes author and
timestamp of a Link Expression.

This allows to use Prolog’s backtracking-based query mechanism to
detect arbitrarily complex graph patterns. Also note that since all Link
Expressions are signed by their respective authors (and discarded by the
ADAM runtime if that signature is broken), we can use Prolog derivations to
elegantly infer complex semantic properties based in cryptographically
proven and thus tamper-resistant statements and actions of agents. In other
words, ADAM’s Social DNA is the basis for dynamically defining interaction
patterns that can be checked and thus enforced between agents without
introducing physical or even logical centralisation.

Conceptually, ADAM’s Social DNA shares the abstract core principles
behind Holochain’s DNA validation rules—but it’s an application of these
principles on a different and complementary level of abstraction. The main
differences between ADAM Social DNA and Holochain DNA based validation
rules are the following:

• ADAM SDNA is not static. A Neighbourhood can iterate quickly on
different sets and compilations of various SDNA rules. This is by design:
ADAM SDNA should enable users to define and share their own custom
interaction patterns without having to require deep technological skills
and without creating a new app. Users should be able to use SDNA to
adapt existing infrastructure, i.e. Languages, Neighbourhoods and apps/
UIs, to their community’s and culture’s specific interaction patterns.

• ADAM SDNA runs on Perspectives, i.e. base-layer-independent
semantic graphs. As such, it marries the concepts of the semantic web
with agent-centric principles and distributed validation as pioneered by
Holochain. It defines interaction patterns independently of back-end and
networking technologies used in Languages and thus allows for the
inclusion of various technologies and network stacks in the definition and
application of high-level semantic patterns.

Social DNA is like the transposition of Holochain’s DNA to a higher octave. It
enables an easier on-ramp into this novel agent-centric way of ensuring data
integrity. But it comes with a cost: populating the Prolog engine with
semantic link-facts assumes the provisioning of a full snapshot of the shared
Perspective. ADAM Neighbourhoods are mechanisms for enabling full-
synchronisation between agents. This makes sense for digital mappings of

Coasys whitepaper 19

most in-group social structures like teams, organisations, physical living
communities, etc. And with the Social Organisms described below, ADAM
offers a different approach to scaling by defining fractal holarchies of these
structures. A major aspect that Social DNA is intended to facilitate is the
frictionless introduction of new interaction patterns at, and from, the edge.
This means enabling users to quickly and easily prototype new social
dynamics and have their digital communication infrastructure develop with
and in concordance with their (non-digital, real-world) social systems.

As soon as a new interaction pattern implemented in Social DNA needs
to scale up beyond the membrane of an ADAM Neighbourhood there are
three ways possible:

• Implement an ADAM Language which defines Expressions that
resemble the semantic of the interaction. This is like traditional app
development—the back-end part of it. While any technology may be used
and chosen specifically for that new Language, the migration from Social
DNA to Holochain DNA might be specifically adequate, given the similarity
in its approach.

• Spawning ADAM Social Organisms that embody the given Social DNA
and organising those in fractal holarchies. See below for more details on
ADAM’s Social Organisms

• Using the Social DNA in the Coasys Synergy Engine queries to find
other agents, Neighbourhoods and Social Organisms that provide
matching data and potentially embody the same Social DNA. Read below
for an in-depth description of the Synergy Engine.

SDNA Subject Classes

As we explored earlier, ADAM and Social DNA provide a flexible and
semantically rich environment for representing and reasoning about data. To
make this environment even more accessible and useful to app developers,
we have introduced the concept of "Subject Classes”.

Subject Classes in Social DNA are akin to class definitions in Prolog. They
represent ontology classes, complete with properties and collections.
However, Subject Classes extend beyond traditional class definitions,
incorporating the principles of subject-oriented programming, which focuses
on representing objects from different subjective viewpoints.

Coasys whitepaper 20

In essence, a Subject Class provides a template for overlaying a graph
structure over a base expression. This allows the same base expression to be
interpreted and treated in various ways depending on the Subject Class
applied. This flexibility makes ADAM and Social DNA a highly versatile
persistence layer for apps, as it can cater to diverse requirements and use-
cases with ease.

Consider the following example:

subject_class("Todo", c).
constructor(c, '[{action: "addLink", source: "this", predicate:
"todo://state", target: "todo://ready"}]').
instance(c, Base) :- triple(Base, "todo://state", _).

property(c, "state").
property_getter(c, Base, "state", Value) :- triple(Base, "todo://
state", Value).
property_setter(c, "state", '[{action: "setSingleTarget", source:
"this", predicate: "todo://state", target: "value"}]').

property(c, "title").
property_resolve(c, "title").
property_resolve_language(c, "title", "literal").
property_getter(c, Base, "title", Value) :- triple(Base, "todo://
has_title", Value).
property_setter(c, "title", '[{action: "setSingleTarget", source:
"this", predicate: "todo://has_title", target: "value"}]').

It defines a Subject Class called “Todo” with two properties: “state” and
“title”. The used predicates “subject_class”, “property” and “property_getter”
etc. enable a generic way for ADAM and UIs to interface with these classes
and reflect on their properties. We’ve developed tooling around Subject
Classes that is designed to make it seamless for app developers to leverage
this power. With these tools, developers can define and interact with their
app-specific ontology based on ADAM's meta-ontology easily, thus ensuring
interoperability. The class definition above, for instance, got auto-generated
from the following JavaScript class definition through the use of ADAM class
decorators:

 @SDNAClass({ name: "Todo" })
 class Todo {
 @subjectProperty({
 through: "todo://state",
 initial:"todo://ready",
 writable: true,
 required: true
 })
 state: string = ""

Coasys whitepaper 21

 @subjectProperty({
 through: "todo://has_title",
 writable: true,
 resolveLanguage: "literal"
 })
 title: string = “"
 }

The concept of Subject Classes shares a close relationship with SHACL
shapes, a standard for validating RDF graphs against a set of conditions. Just
like SHACL shapes, Subject Classes allow for the definition of triple-based
associations which get grouped to form higher-level virtual objects, or
“subjects". Tooling for compatibility with SHACL is not implemented yet, but
planned.

This approach provides an ergonomic way for developers to define
complex and meaningful relationships within their data, thereby enhancing
the app's ability to participate in the collective sense-making facilitated by
ADAM and the Synergy Engine.

As of writing of this paper, all aspects of the ADAM Layer described
above are implemented in the current version 0.3.4 (released March

2023) and usable in an alpha-version capacity, i.e. tested with
regression and integration tests and field-tested with Flux in small

networks of up to 70 users. Work on the last piece of the ADAM Layer
ontology, Social Organisms, is in progress.

Social Organisms: The Emergence of Collective Agents

In a world that is entirely agent-centric and distributed, collective sense-
making and decision-making become crucial yet challenging to achieve. This
brings us to the concept of "Social Organisms," also referred to as Collective
Agents.

Social Organisms are a specific type of ADAM Neighbourhoods. They
embody a group of agents that, due to their fixed and deliberately chosen
Social DNA, can be perceived as a single agent from an external viewpoint.

Coasys whitepaper 22

This facilitates group coherence, enabling the collective to act and respond
as one.

A key requirement for a Social Organism is the capacity to collectively
author Expressions, much like individual agents. However, the expressions
— especially link expressions and thus graph patterns — must be in
coherence with the internal state of the Social Organism. This internal state is
reflected in the data shared within its Neighbourhood.

To ensure this coherence, Social DNA must define the types of
expressions that a Social Organism can create. These definitions depend on
the internal state of the Social Organism, making it an integral part of the
collective's decision-making process.

However, one key challenge remains: how can we verify from an external
perspective that an expression, shared by an individual agent on behalf of the
Social Organism, is indeed coherent with the Organism? This is especially
complex given that we want to avoid providing unrestricted access to the
internals or the Social DNA of the collective.

Several additions are envisioned to facilitate this:

1. SDNA Flows: similar to the “Subject Classes” specification above, a
Prolog predicate schema is defined that enables the dynamic definition of
information flows, mapping inputs of the Social Organism to potential
outputs. As Social DNA, these Flow definitions can generally be
instantiated on any incoming Expressions (of any ADAM Language), and a
given flow can also constrain to which Expression it applies. Flows define
states (mapped to the interval [0, 1]) through which the processed
Expressions transition. For a given state, the Flow defines what actions are
possible on an Expression that gets processed. In other words: SDNA
Flows are like finite state-machines with a starting- and an end-state.
Mounted into a Social Organism, the end state means (per definition) that
the processed Expression may be shared (by any of the member agents)
on the outside as an expression of the whole. Consider the following
example, implementing a simple “Todo” Flow with three states (“todo”,
“doing”, “done”):

register_sdna_flow("TODO", t).
flowable(_, t).

flow_state(ExprAddr, 0, t) :-
 triple(ExprAddr, "todo://state", "todo://ready").
flow_state(ExprAddr, 0.5, t) :-

Coasys whitepaper 23

 triple(ExprAddr, "todo://state", "todo://doing").
flow_state(ExprAddr, 1, t) :-
 triple(ExprAddr, "todo://state", "todo://done").

start_action(‘[{action: "addLink", source: "this", predicate:
"todo://state", target: "todo://ready"}]', t).
action(0, "Start", 0.5,
 '[{action: "addLink", source: "this", predicate: "todo://
state", target: "todo://doing"}, {action: "removeLink", source:
"this", predicate: "todo://state", target: “todo://ready”}]’, t).
action(0.5, "Finish", 1,
'[{action: "addLink", source: "this", predicate: "todo://state",
target: "todo://done"}, {action: "removeLink", source: "this",
predicate: "todo://state", target: “todo://doing”}]', t).

This example Flow can apply to any expression (flowable(_, t)) and
defines three states 0, 0.5 and 1 through the existence of a Link with
predicate “todo://state" to the targets “todo://ready", “todo://doing”, “todo://
done”, respectively. The initial start_action adds a link to the processed
Expression that puts it into the “ready” state (0). The “Start” action is defined
to transition from state 0 to 0.5 and replace the link accordingly. The “Finish”
action works analogously.

2. Coherent Social Organism Expressions: There needs to be an
automatic process within the ADAM implementation that flags an
Expression as something being said on behalf of a Social Organism, and
that shows (to any agent, especially those outside of the Social Organism)
if that expression is coherent.

For that we add two fields to the generic Expression class:

a) socialOrganismSource?: string to ExpressionClass itself, which just
signals that this Expression (though authored by an atomic agent) is
spoken on behalf of the given Social Organism - if this field is present.
b) socia lOrganismCoherence?: number which gets added
to ExpressionProof and is, similar to valid/invalid, a virtual property that
the AD4M executor calculates and adds to the response sent to clients/
UIs. The number is understood as a percentage with 0 meaning not
coherent (yet) at all and 1 meaning 100% coherent.

When an Expression gets created on behalf of a Social Organism, all
other agents within will get notified by that event, executed by the agent
creating the expression since they seem to have an incentive to get their
expression to reach a high coherence number soon. When those other
members get notified of a new SO Expression, they will retrieve that
Expression and check if it is something the SO is allowed to say by
running the Organisms Social DNA Flow on it. If that Social DNA action/

Coasys whitepaper 24

todo://state
todo://ready
https://github.com/perspect3vism/ad4m/blob/f4df074e9c9da0938feff97b9ea7520d98839350/core/src/expression/Expression.ts#L42

query returns true, they will add their signature to that Expression. If it
doesn’t their will sign and add a refutation-entry to the Expression. The
Expression’s coherence-number is a property calculated from the ratio of
signatures per number of agents in the Social Organism. The presence of
one refutation will set the coherence to 0.

3. SO Bootstrap Language: To make this work, we add another
bootstrap Language for Social Organisms, which stores expressions that
represent SOs, similar to the Neighbourhood language (with “so” alias):

 so://<hash based unique address>
This language will also store the list of members per each SO and their
external (public) expressions with their signature/refutation lists. Since the
interaction with SO Expressions, (creating, concurring, rejecting) and the
management of SO members go beyond the basic Expression Language
interface, a specialised interface for this type of Language is introduced:

export interface SocialOrganismAdapter {
 create(organismAddress: string, messageURI: string)
 concur(organismAddress: string, messageURI: string)
 reject(organismAddress: string, messageURI: string)

 signatures(organismAddress: string, messageURI: string):
Promise<string[]>
 members(organismAddress: string): Promise<string[]>

 vouchForNewMember(organismAddress: string, newMemberDid:
string)
 rejectNewMember(organismAddress: string, newMemberDid:
string)

 newExpressionCallback()
 newMemberCallback()
}

4. Social Organism SDNA specs.: We require the definition of a Social
DNA / Prolog interface (i.e. predicates) which is ADAM’s expectation
against any Neighbourhoods Social DNA that enables it to get upgraded
to a Social Organism. There two main functions that need to be enabled
by this interface:
a) Selection of Expressions, or graph patterns, that are valid
Expressions of the whole. That is: an Output Expression Predicate. The
previously defined SDNA Flows provide a reasonable interface for the
interaction inside the Social DNA. The selection of output Expressions

Coasys whitepaper 25

in most cases will be as simple as selecting some or all of the defined
Flows to render expressions in their final states (=1) to be shareable.
b) Membrane, i.e. management of the member list. This will be
predicates taking in a DID (agent address) and return true if that agent
shall be added to or removed from the member list.

These Social DNA predicates will be queried automatically by the
executor to implement the described process.

Coasys whitepaper 26

Web-B: The Application of ADAM

Intended as the base-layer for interoperable collective sense-making and
the digital infrastructure for new and evolvable patterns of collective action
and interaction, the ecosystem spawned by ADAM is referred by us as Web-B,
relating it to what has been described as Game-B by others. The result of
applying ADAM on an ecosystem-scale will not just be an iteration or an
enhancement of the existing web or blockchain-based Web3, but rather a
new paradigm that enables our techno-sphere to shift from mainly
competitive to mostly synergistic communication and interaction patterns.

At its core, ADAM is inherently a social network. However, it is a social
network with a significant departure from the traditional sense. It does not
rely on a specific User Interface (UI) or conform to the design restrictions of
established social media platforms. Instead, it represents a shift from data
ownership and centralization to a truly agent-centric, decentralized social
and knowledge network.

With ADAM, the social network is formed by the interconnections
between agents and their perspectives, their information, as well as the
relationships they form with others, the common Languages they speak, and
the Social DNA they share. All these connections are built and stored on an
open, shared foundation that goes beyond the boundaries of traditional UI,
centralised databases and even application boundaries.

This approach represents a new kind of web - Web-B. It is a web where
meaningful relationships, connections, and collaborative knowledge
generation are the driving forces. In Web-B, every application becomes an
interface into this shared pool of knowledge, tapping into the vast
interconnected network that ADAM facilitates.

In this chapter, we will delve into the possibilities that this new paradigm
opens, the profound changes it can bring about, and the immense potential
it holds for shaping our digital future.

Coasys whitepaper 27

Flux: The First App of the New Web

As the inaugural application built on the ADAM infrastructure, Flux is a
testament to the unique advantages of this new paradigm. You can try Flux
(and thus ADAM) for free at https://fluxsocial.io.

Flux is a fully decentralized social toolkit that enables communities to
coordinate with greater privacy, agency, and collaboration.

Here are some of the key features that make Flux an embodiment of the
Web-B vision:

• Highly Customizable and Composable: Flux allows communities to
compose dynamic experiences by building their own features,
customizing their UI, and integrating their favorite third-party tooling.
• Private, P2P Networks: Flux allows for the creation of private, p2p

networks that exist only between its members and remain independent
from centralized servers or third-party entities.
• Sovereign Data and Identity: The information and identity you create

is portable across all applications in the ADAM ecosystem.
• Dynamic Communication: Users can can create various channels

including p2p messaging, forums, audio & video, and project
management. This can evolve into any form a community desires.
• Community Channel Types (app store): This will allow users to install

games, tools, and other apps made by the community.

Future implementations in Flux promise to enrich its functionality even
further. Some of the exciting features on the horizon include:

• Distributed Governance: Flux plans to integrate ADAM's built-in
Social Organism capabilities to implement DAO equivalents, facilitating
the design of value flows within your social space.
• Native Web3 Functionality: Flux has plans to build native crypto

features such as p2p crypto payments, wallet integrations, token gating,
and more.
• Integrations: Flux is primed for integrations with any popular Web2

or Web3 services. Some examples include Discord or Telegram channel
plug-ins, decentralized asset management, decentralized proposals and
voting (Snapshot), viewing a contact list for crypto payments, and more.

Coasys whitepaper 28

https://fluxsocial.io

Coasys app: The General Purpose Browser for ADAM

As we push the boundaries of the ADAM ecosystem, we're preparing to
launch the Coasys app, a general-purpose browser specifically designed for
ADAM data. Coasys builds on the experimental work undertaken with
Perspect3ve, advancing the ideas and features into a more refined and user-
friendly product.

Coasys aims to bring a holistic experience for interacting with
Perspectives, Neighbourhoods, and Social Organisms within the ADAM
network with the Coasys app. It will also serve as a host for the Synergy
Engine queries, a key component of the ADAM infrastructure.

Coasys inherits core principles and ambitions from Perspect3ve, the
experimental agent-centric browser and social network developed in line
with ADAM concepts. Perspect3ve was intended to provide a visual and
generic means for users to create and manage Perspectives, as well as to
establish and modify expressions within these Perspectives. Coasys will
continue this pursuit, providing an intuitive and comprehensive interface to
the ADAM universe.

Much like its predecessor, Coasys will not only serve as a browser but
also as a generic social app and collaboration tool. ADAM's inherent group
semantics and spaces (Neighbourhoods) enable Coasys to facilitate group
collaboration in a versatile manner. The capacity to interpret a
Neighbourhood's Social DNA and adapt its UI accordingly allows Coasys to
be tailor-made for any group's needs.

Building on the feature set developed for Perspect3ve, Coasys is
designed to offer a wide array of functionalities:

• Perspective Management: Create, read, update, and delete
Perspectives with ease.
• Graph-Based Perspective View: Visualize Perspectives in a graph-

based view, making it easier to understand and navigate.
• Expression Handling: Facilitate the creation and linking of

expressions.
• Neighbourhoods: Enable the publishing of Perspectives as

Neighbourhoods and joining of Neighbourhoods.
• Social DNA Prolog Rules: Provide functionalities for creating,

reading, updating, and deleting Social DNA Prolog rules.
• Custom Expression Actions: Customize expression actions to suit

your needs.

Coasys whitepaper 29

https://github.com/perspect3vism/perspect3ve

• AI Chat: Leverage AI to streamline the creation of Social DNA and to
interact with local data through a local run LLM.
• Expression Filtering: Filter expressions through the predicate

`hiddenExpression(X)`.
• Custom Icons: Personalize expression widgets with custom icons.
• Virtual Icons: Utilise widgets representing complex graph patterns.
• Peer/Friend View and Messaging: Facilitate peer/friend view and

direct messaging.
- 'Canonical' Neighbourhood View: Display a 'canonical' view of a

Neighbourhood.
- Social Organisms Management: Facilitate the creation of and

interaction in Social Organisms.

In sum, Coasys aims to be a flexible and comprehensive tool, bringing
ADAM's agent-centric vision to life and offering users a versatile platform to
engage with the ADAM ecosystem.

Reusable Components

The nature of ADAM as a framework encourages and fosters an
ecosystem where components are designed to be shared and reused across
applications and user Perspectives.

Languages in ADAM are essentially tools for describing and interpreting
data. Their flexibility and universality mean they can be reused in various
applications, providing a consistent way to interpret and describe data
patterns. This reduces redundancy and encourages interoperability between
apps. Users can remix these Languages within their Perspectives, enabling
them to create unique ways of viewing and interacting with data. The same
set of data can yield different insights and functionalities based on how users
choose to apply various ADAM Languages.

Social DNA serves as the blueprint for how data is organized and
interacted within a community. Like Languages, Social DNA can be reused
and remixed within different Neighbourhoods, allowing for consistent
patterns of interaction to be applied across different groups. This encourages
consistency while allowing for unique permutations based on the needs of
each community.

The user interfaces (UIs) in ADAM is another reusable component. Users
can choose with which UI they want to access their Perspectives,

Coasys whitepaper 30

Neighbourhoods and Social Organisms. Developers can create UIs that can
be used across different combinations of Languages and Social DNA and
even remixed by users within their own Perspectives. This flexibility allows for
a high level of customization and personalization, promoting user
engagement and ownership over their digital experiences.

This emphasis on reusability and remixability of components
significantly lowers the barrier for co-creation. As components are reused
and remixed, new applications, functionalities, and user experiences can be
created with minimal effort and resources. New applications that provide
new ADAM Languages, Social DNA and UI add components that can be
remixed and used in the context of existing applications. This fosters an
ecosystem where synergy and cooperation might outperform competition.

By leveraging the reusability of ADAM components, we enable a
profound shift from a competitive model of software development to a
cooperative one. Simply by being apart of the ADAM ecosystem, everyone
works synergistically, enhancing creativity, reducing redundancy, and creating
a collaborative environment that benefits all users. This model has the
potential to drive a significant evolution in how software is developed, used,
and shared.

Coasys whitepaper 31

Synergy Engine
So far, we have introduced the concept of the ADAM layer and how it

acts as a fundamental shift in the way we interact with the web, transitioning
from a traditional, centralised model to an agent-centric, distributed one.
This paradigm shift spawns a new kind of distributed, semantic and
interoperable web. It leverages our natural ways of human communication to
form a vast, interoperable social network that is not bound by the constraints
of specific apps or technological platforms.

However, this distributed nature of the ADAM ecosystem brings forth a
crucial question: how do we find data in such a network? Unlike traditional,
centralised systems where data is stored in a few controlled locations, the
ADAM network—with its agent-centric design—decentralises data storage.
Each agent, or user, retains ownership and control of their data. This unique
arrangement ensures privacy and sovereignty over personal data but also
presents a challenge when it comes to locating information.

This challenge, though seemingly technical, is intrinsically tied to the
broader subject of sense-making. In a world where information is abundant
and often conflicting, finding true, reliable information is not simply about
accessing data; it's about understanding the sources of information and
evaluating their trustworthiness. It is also about non-linear and semantic
connections between data. Following Barbara Marx Hubbard’s visionary
descriptions of what is possible, we want to emphasise the important aspect
of enabling more synergistic connections between existing social functions
and organs and associate the introduced query mechanism to the term
“Synergy Engine” introduced by her.

The Synergy Engine serves as the foundational tool within the ADAM
ecosystem that facilitates the process of finding information while
addressing the challenge of sense-making. It does so by creating a system
that not only locates data, but does so by checking intrinsic properties of the
information requested and also the trustworthiness (or other properties as
defined in the query) of its source—thereby providing a more holistic and
reliable approach to information retrieval.

In the following sections, we will delve deeper into the workings of the
Synergy Engine, its query mechanism, and how it leverages the unique
properties of the ADAM layer to promote efficient sense-making in the agent-
centric distributed web.

Coasys whitepaper 32

https://www.youtube.com/watch?v=hpzVdHluQzM
https://www.youtube.com/watch?v=hpzVdHluQzM
https://www.youtube.com/watch?v=hpzVdHluQzM

Social DNA based queries

In the ADAM layer, a key component of its operational framework is the
concept of Social DNA. Social DNA, essentially, is a collection of Prolog
programs (facts and rules) that are used to define graph patterns in ADAM
Perspectives. These rules specify the properties and interrelationships of the
information within a perspective. In the context of queries within the ADAM
network, Social DNA plays an integral role.

A query in Coasys’ Synergy Engine is defined by a specific Social DNA.
This implies that for a given (potential) result, which is essentially a snapshot
of a Perspective, any ADAM node can validate its relevance by running the
query's Social DNA against it in the ADAM Prolog engine. This provides an
efficient and decentralised means of verifying the accuracy of a query result.

However, the utility of Social DNA extends beyond simple verification.
Since it provides for a flexible and powerful way to objectively check the
relevance of a given potential result, it plays a pivotal role in propagating the
query through the ADAM network. Each agent in the network can receive a
query and check against their own (private and shared) perspectives if they
hold the requested data, i.e. match the pattern implied by the Prolog
program. If a match is found, the data can be sent back as a result. If not,
they can further propagate the query to their connections in the network.
This forms a distributed, peer-to-peer search mechanism that efficiently
traverses the ADAM network, harnessing the power of collective
intelligence to find and validate information.

This process inherently decentralises trust, allowing each node in the
network to verify results independently, based on the defined Social DNA of
the query. By doing so, it reduces the reliance on a centralised authority or
algorithm for verification and instead leverages the power of the network and
the collaborative effort of the agents within it. This not only fosters a greater
sense of collective intelligence but also promotes a more transparent,
reliable, and efficient means of sense-making within the ADAM network.

Let's consider a simple example of a Social DNA rule in Prolog that could
be used for a query in the ADAM network. Let's say we want to find an
Expression of a given “Post” Language that has at least 5 "likes" by different
agents, whereas a "like" is expressed as a reaction from the Flux’ ontology
Language with “thumbs up”. The Social DNA could be written as follows:

Coasys whitepaper 33

popular_post(Post) :-
 languageAddress(Post, 'Qm123abcd'),
 setof(

Author,
link(Post, “flux://reaction", “flux://thumbs_up", Author, _),

 Authors
),
 length(Authors, NumLikes),
 NumLikes >= 5.

This rule can be read as “a post is popular if its an Expression of
Language Qm123abcd, there is a set of authors who each have authored a
link with that post as source, “flux://reaction" as predicate and “flux://
thumbs_up" as target, and that set’s size is 5 or higher.

When this query is propagated through the ADAM network, each agent
would verify the rule against each of their perspectives, or unions of
perspectives, and if for any of these instances the Prolog engine can find a
match for popular_post, they would return a snapshot of that perspective.

This simple example illustrates the utility of Social DNA based queries.
They allow us to create arbitrary, semantic and specific queries that can be
independently verified by each agent in the network. The use of Prolog for
defining the Social DNA allows for the creation of highly flexible and
expressive queries, leveraging its strength as a declarative logic
programming language.

Social Stack

As queries propagate through the network, they trace a path through
multiple agents. Each agent in this path represents a "hop" in the query's
journey. Like a call-stack tracking the function calls of an execution thread in
programming, the Social Stack is essentially a record of this path, listing all
the agents that the query has passed through. However, the Social Stack
goes beyond being a mere list of agents. Each entry in the stack is an ADAM
link that describes the relationship between two agents: the agent who
forwarded the query (the previous agent) and the agent who received it (the
next agent). Importantly, each ADAM link is signed by the previous agent.
This provides a cryptographic proof of the interaction between these two
agents and of their relationship.

Coasys whitepaper 34

flux://reaction
flux://thumbs_up
flux://reaction
flux://thumbs_up
flux://thumbs_up

If an agent receives a query from one of their friends (together with the
Social Stack collected up until that point) and is not able to resolve it with the
data available to them, they can choose to pass it on to all or some of their
friends. But before passing on, they have to create a statement in the form of
an ADAM Link with them (their DID) as the source and the receiving agent as
the target. The predicate can point to an Expression carrying information
about the kind of relationships. That link has to be signed as an Expression
itself and thus represents cryptographic proof that the source agent declares
a certain relationship towards the receiving agent.

One critical feature of the Social Stack is its inclusion in query results.
When an agent responds to a query with a result, they have to include the
Social Stack as part of their response. An empty Social Stack, or one that
can’t show a connection between query source and the result providing
agent will fail the built-in checks of query results independently of the
content of the result—unless explicitly allowed in the query. Moreover, with
the Social Stack a query can specify certain conditions relating to the stack
that must be met. For instance, a query might require that all agents in the
Social Stack receive a certain level of trust from their predecessor. This level
of control over the Social Stack enables users to define more complex
requirements with regards to the agents delivering valid results. For example,
stating that each agent along the path of the query needs to have at least on
“popular post” as defined above:

social_stack_hop(_,_,Agent), popular_post(Post),
expressionAuthor(Post, Agent).

Searching via other people's social graphs

This distributed search and query process is intrinsically tied to social
connections, enabling a unique form of networked exploration. Instead of
relying solely on algorithmic computation, ADAM leverages the social graphs
of agents to facilitate information discovery. This approach of navigating
through shared, interconnected knowledge landscapes enables the
discovery of what could be called "social cliques”.

Especially when running queries with complex and high-level semantic
requirements, different results can be possible. The result delivered obviously
depends on the data available to the agents asked. A social clique is a group
of agents who, due to their interconnected relationships and mutual trust,
tend to either have similar perspectives, or trust relationships amongst a

Coasys whitepaper 35

similar portion of the network—and thus yield the same results when a query
is propagated amongst them.

This fact can be regarded as problem or as an advantage, depending on
perspective. Excluding certain agents and results from the set of possible
results might be what the querying agent wants (to exclude bots from
providing manipulated results, for instance). It could also be a consequence
of an agent being in a local (filter-) bubble.

From a systemic, holistic view-point, these cliques might even represent
the harmonisation of shared perspectives within a specific community or
network. However, as we move between different social cliques, we may
encounter different results to the same query. This variability is a reflection of
the diversity of perspectives and experiences across a distributed, agent-
centric network. It acknowledges the fact that knowledge and understanding
are not monolithic or objective but shaped by our individual and collective
contexts.

The implication of these distinct cliques is profound. By observing the
responses of different cliques to the same query, we can gain an overview of
the social landscape of "memetic tribes"—groups formed around shared
beliefs, perspectives, and interests. This approach not only fosters the
discovery of knowledge and perspectives but also reveals the contours of the
social terrain itself.

In both cases,

1. The querying agent wanting to include data outside their filter bubble, and
2. Running a “controversial” query multiple times from different source points

in the social network to map the landscape of metic-tribes and filter-bubbles

it would be beneficial to have the ability to run a query starting from a foreign
agent. Therefore Coasys intends to build infrastructure to find and connect
with agents outside of the users social milieu, applying and supporting the
formation of global public indexes for instance.

To cater for the holoptic approach of running the same query from
multiple globally sampled starting agents in order to render a map of the
memetic boundaries and partial shared perspectives within the collective
network, a specific application is envisioned. In a public forum style app,
Synergy Engine queries could be grouped by query-DNA and thus listing all
different starting points and results. Query topics would become their own
discussion threads, logging results and showing an overview of the
collectively held data.

Coasys whitepaper 36

With well crafted, sophisticated queries, scientific research programs
can be spawned and maintained on this infrastructure in a low-cost,
distributed, and inclusive fashion.

In essence, ADAM's approach to searching via other people's social
graphs is a mechanism for understanding collective sense-making. It moves
beyond the individualistic approach to knowledge acquisition and embraces
the complex, networked, and socially-informed nature of our understanding.
By doing so, it offers a dynamic, comprehensive, and nuanced way to
navigate the information ecosystem.

Privacy concern and solution

The nature of ADAM's query mechanism, which relies on agents sharing
information through their interconnected networks, raises a privacy concern.
Especially in the context of monetarily incentivised queries as discussed in
the follow section. The core of the concern lies in the potential misalignment
of incentives: agents could be rewarded when sharing confidential data they
have access to, but whose source wouldn’t want that data to be shared in
public query results. In essence, this could inadvertently turn friends into
spies, as they might share data that was initially communicated in a private
context, such as a direct message, private Neighbourhood, or within a Social
Organism.

To address this, ADAM will be extended with a systemic solution: the
inclusion of a watermark in every ADAM Expression. This watermark,
included in the signed bytes of every expression, serves as a privacy
membrane, preserving the integrity of private information by representing
the sharing context and intended visibility rights. If an agent attempts to
share data marked with a watermark in a query result, they would reveal their
break of trust publicly and the agents whose privacy was compromised and
trust broken will likely downgrade their trust towards the misbehaving agent
and exclude them from Neighbourhoods and Social Organisms. Removing
the watermark prior to sharing private information is not possible without
breaking the signature which renders the data unusable in query results.

Moreover, any data shared within a particular perspective that is to be
used to fulfill a query must be collectively submitted by the Social Organism
that holds that data. The watermark in the link expressions indicates the
ownership of that data, and only the Social Organism with the correct
watermark can validate and submit the query result. Individual agents who

Coasys whitepaper 37

attempt to provide the data will fail the query result check, thus maintaining
the privacy membrane.

This mechanism ensures that data privacy is respected within the ADAM
network. It provides a safeguard against potential misuse of confidential
information, thereby reinforcing trust among agents and ensuring that
privacy concerns do not undermine the network's functionality or credibility.

Relationship to AI and LLMs

In this context of the Synergy Engine and distributed, semantic queries
on ADAM, we witness a thoughtful blend of artificial and collective
intelligence. The vision for ADAM involves a thriving ecosystem of
applications that agents use to fuel their privately held perspectives which
the owner can then choose to include in the creation of query results. When
these myriad data points are accessed through a query, the quality of
responses can, at some level of scale, challenge those produced by
centralised large language models (LLMs).

The key principle here is that collective intelligence, the cumulative and
coordinated wisdom of a group, has the potential to offer more authentic and
trustworthy results than a centralised AI model. This perspective marks a
significant departure from current models where large, centralised entities
control most of the information.

However, this doesn't suggest that AI or LLMs are rendered irrelevant
within the ADAM ecosystem. In fact, LLMs have a crucial role, specifically in
translating natural language queries into the Prolog-based Social DNA
queries utilised by ADAM. Coasys plans to train small enough models to run
locally within the ADAM runtime to interface with local Perspectives and to—
especially— create Social DNA from natural language.

This is where the Synergy Engine truly shines: it enables users to interact
with the ADAM network as if they were querying a centralised AI model. The
core difference lies in the source and reliability of the information. Here,
query results are derived based on human trust relationships and up-to-date,
distributed data sources, offering not only data but a sense of confidence in
the integrity and authenticity of that data.

In essence, ADAM integrates AI, not as the primary source of information
but as a powerful tool to enhance the usability and efficiency of the user
experience. It combines the convenience of AI interfaces with the

Coasys whitepaper 38

trustworthiness of collective intelligence. Thus, while users can interface with
the system as they would with a large AI model, the responses they receive
are more reliable and grounded in the reality of human trust relationships.

Coasys whitepaper 39

SynergyFuel
In our exploration of the ADAM ecosystem and the Coasys Synergy

Engine so far, we have considered how agents can interact, share, and
access information across the network. But an important question remains:
why would agents actively participate in sharing or relaying queries from
others at all? What is the incentive for users to fuel the network with their
data and efforts?

The answer lies in SynergyFuel, a unique form of cryptocurrency
specifically designed for the ADAM ecosystem and for the distributed
validation of query results. Agents will be able to use SynergyFuel to pay
other agents for the relaying and resolving of their queries. The
implementation of SynergyFuel will be intrinsically linked to the interaction
pattern of posing and resolving queries. Similar to the concept of smart
contracts in data-centric blockchains, SynergyFuel will enable locking-in of
the query reward with the query-DNA code. Only a matching query result will
be able to unlock those funds and earn the reward.

SynergyFuel will be implemented as a mutual-credit, asset-backed
currency on Holochain. This will enable the integration of a Prolog engine
into the currency code for result verification and the construction of an
intrinsic value of this currency: the network’s capacity to meaningfully
respond to semantic queries based on real human trust relationships.

In this manner, SynergyFuel creates a symbiotic relationship between
individual user engagement and the overall health and effectiveness of the
network. The incentive to earn, hold, and utilize SynergyFuel drives users to
contribute to the network, thereby enhancing the network's collective
intelligence and capacity for sense-making. The intended outcome is a
vibrant, self-sustaining, and evolvable ecosystem that enriches all
participants while continually growing in value and capacity.

Holochain based mutual-credit currency

SynergyFuel, as an agent-centric mutual-credit, asset-backed currency,
operates on principles quite similar to those of HoloFuel, another
cryptocurrency built on the Holochain framework.

HoloFuel is a mutual-credit currency, which means that every unit of
currency in existence is accounted for as a credit to one account and a debit

Coasys whitepaper 40

to another. There is no central authority issuing new currency; rather,
currency is created and destroyed through transactions between users, in a
validated way. This arrangement ensures that the total amount of HoloFuel in
existence always remains at zero, but the amount of units in circulation can
adjust in a kind of homeostasis, only based on the distributed validation rules
of the network. In the case of HoloFuel, it is based on the computing capacity
provided by users: if an agent can (cryptographically) prove that they offer
computational resources to the network and have created an income in
HoloFuel with it, the distributed validation rules allow other agents to grant
them a (higher) credit line, thus adding currency units to the effective supply
which adequately represent the newly added computational capacity of the
network.

Similar to HoloFuel, SynergyFuel operates on a mutual-credit system.
However, SynergyFuel’s value is not tied to general computational power, but
to the network's capacity to resolve semantic queries effectively and with the
ability to reason about the confidence put into the result and its author. It's a
system that incentivises users to contribute to the network's collective
intelligence, by 1) responding to queries, but also 2) by relaying queries to
people they trust. In order to achieve a similar homeostasis between the
amount of currency units effectively in circulation and the network’s capacity
to resolve queries, agents’ credit limits will depend on their participation in
the query process and thus to their average income through query relaying
and resolving.

Note that this kind of agent-centric mutual-credit currency is very
different to data-centric blockchain tokens. Without Holochain and its
validating DHT, it’s hard to imagine such a currency design to be viable to
begin with. The reason for choosing this currency design is simple: it is the
one that best matches the need of a real-world, non-corruptible, distributed
and growing ecosystem.

Let’s briefly contrast the alternatives: Bitcoin, and most other crypto-
currencies, take the approach of having a static or at least predefined supply
—they are artificially made scarce to have value. While this rewards people
who buy-in early, it can become a problem to the growth of the ecosystem
later-on when there is more real-world value than there is liquid currency.
This deflationary situation limits growth of the ecosystem as new users will
have to buy-in from earlier buyers. While this rewards early movers for just
holding the currency, it slows down adoption. This problem could be solved
if we would detect such situation and then mint new currency units—
basically following the schema that fiat currencies and central-banks are
implementing. The problem with that is: who should have those systemic

Coasys whitepaper 41

powers? If we allow such a role it introduces central control, corruption and
the problem of overcorrection since this central bank would need to have
omnipotent analytical powers to adequately adjust the supply (a problem we
arguably see perpetuated in the end-phases of economic systems).

This new model of Holochain based mutual-credit, asset-backed
currencies solves all these problems since it does not only distribute the
power over existing currency units to the users, but it also allows for a fully
distributed adjustment of the total supply, based on the state of the network.
With Holochain’s high degree of freedom with regards to specific validation
rules, this “state of the network” can be a complex, high-level characteristic—
like in our case: the networks ability to respond to semantic queries.

Query Vaults

Holochain's novel, agent-centric architecture is instrumental in
implementing not only the basic currency model applied with SynergyFuel,
but also enabling vaults, i.e. programmable, agent-centric smart contracts,
that are validated by complex Prolog queries, i.e. ADAM’s Social DNA (without
requiring external oracles). By integrating a Prolog engine into SynergyFuel's
validation rules, it's possible to implement 'vaults' that unlock SynergyFuel
units based on the validity of a query result.

Agents initiating a query will create a vault (inside the SynergyFuel hApp)
that holds the query-DNA and the reward they have selected to spent on that
query. Since we are talking about an agent-centric Holochain app, we will
have to explain what we mean by “the vault holds SynergyFuel”. An agent
selecting an amount of SynergyFuel as reward will earmark that amount on
their source chain, making it impossible to spent it otherwise. That mark is an
entry on the agent’s source chain as well, which will reference the vault entry
in the DHT.

Vaults will have validated links to potential query results. When an agent
has found/constructed a matching result, they can post it to the vault’s
results-list. That will trigger the validation of that result entry which will run
the given Prolog program (the query DNA) against the result within
Holochain’s DHT validation. If the result is valid, it will change the vaults
status to “resolved”. This will have a consequence on the querying agent’s
ability to spend further SynergyFuel. If an agent has an amount earmarked for
spending through a vault (which already can’t be moved) and that vault is
resolved but the earmarked amount is not yet sent to the agent who provided
the result, that agent’s source chain is frozen. That means, SynergyFuel

Coasys whitepaper 42

validation rules will make it invalid for other agents to accept money from
them, until they pay the reward. In the Coasys app and the SynergyFuel
wallet app, this will happen automatically anyways, but this validation
scheme makes it impossible to cheat even if these apps or even ADAM or
Holochain nodes get hacked.

Only these payouts of vaults will count as income for the agent receiving
the reward in the context of calculating their credit limit.

Intrinsic Value of a Currency Unit

One of the defining aspects of SynergyFuel is the intrinsic value of each
unit of currency. This value is intrinsically tied to the ADAM network's ability
to facilitate collective sense-making, and it is measured in terms of "hops."

A "hop" is a step along the path that a query takes through the social
network. As a query travels through the network, it moves from one agent to
another, or "hops" from node to node. Each of these hops represents a
discrete unit of effort—the presence of utilisable trust relationships and is this
effort and trust that SynergyFuel is designed to incentivise, reward, and
represent.

The cost of these hops is paid out to the agents along the path of the
query. The agent providing the final result only receives the remainder of the
reward, after the cost of the hops has been accounted for. This system
ensures that every agent who contributes to the propagation and resolution
of a query is appropriately rewarded for their contribution.

Each hop in the query's path includes an addition to the social stack, and
the agent responsible for that addition is free to set a cost for their hop—
tracked in that entry in the social stack. By default, the network will set that
cost to 1 unit of SynergyFuel per hop, but agents can adjust this cost as they
see fit. Also queries can set bounds on hop prices or grant higher prices only
to certain hops, relationships, or relaying agents. This provides a degree of
flexibility and autonomy to individual agents, enabling them to negotiate
their value within the network.

However, this also introduces a dynamic element to the system. As the
social stack grows and more SynergyFuel is "virtually spent," the potential
reward for later agents in the chain decreases. If the remaining reward
becomes too small, agents may choose to stop propagating the query or
choose to (be configured to) not respond with data that would resolve the

Coasys whitepaper 43

query. This mechanism helps maintain balance within the network, ensuring
that the effort required to resolve a query is always appropriately rewarded.

Payouts to hops only occur when that path leads to a valid result. Or put
differently: only valid end-results can trigger payouts—but if that happens, all
agents in that results social stack will benefit. This means that hops are only
of value if they lead to the requested result. Basing the value of SynergyFuel
hops, thus, results in SynergyFuel be intrinsically bound to the networks
capacity to resolve semantic queries based on trust relationships between
agents.

Earning SynergyFuel

The SynergyFuel ecosystem is designed in such a way that every
interaction within the network becomes an opportunity to earn. Fueling data
into private ADAM perspectives increases the probability of earning rewards.
This is essentially akin to mining with your private app data; every ADAM app
becomes a source of potentially monetisable data.

By engaging with the network and connecting with other agents, users
can further increase their chances of earning SynergyFuel. Every interaction,
every connection, and every contribution to the network could potentially be
rewarded. This provides a strong incentive for participation and encourages
users to actively engage with the ADAM network.

Moreover, this system incentivises the use of ADAM apps. By simply
using these apps and contributing to the network, users can earn
SynergyFuel. This not only encourages the adoption of ADAM apps but also
promotes the development of new ones. Developers are incentivised to build
ADAM apps that focus on storing meaningful data and storing it in a
semantically interconnected way.

By ensuring that data is stored in a manner that enables Social DNA to
detect and reason about it, developers can create apps that contribute
significantly to the network's collective sense-making capabilities. The more
valuable and interconnected the data, the more opportunities there are for
earning SynergyFuel. This creates a positive feedback loop that benefits
everyone involved—from individual users and app developers to the
ADAM network as a whole.

Coasys whitepaper 44

The ADAM layer's Synergy Engine and its query mechanism address the
challenge of finding data in a decentralized network by leveraging Social
DNA and Prolog-based queries. However, this raises the question of
information fabrication. To counter this, two strategies are being used.

Firstly, Social DNA empowers agents to define complex queries using
Prolog logic. For instance, an agent looking for events in Bristol could specify
that each event must be authored by an agent with at least two
endorsements from their friends. This not only promotes authenticity but
also helps ensure that the information retrieved is trustworthy.

Secondly, agents can employ double signing as a strategy for ensuring
legitimate results. For example, if an agent is searching for a taxi service, they
could specify that the query reward will only be given to results that they
sign as legitimate. With this approach, the release of funds can be held in
custody until the query maker enters the taxi and verifies the result, thus
lowering the incentive for fabricating false taxi offers.

These mechanisms, in tandem, provide a reliable and efficient approach
to information retrieval that fosters transparency, authenticity, and trust
within the agent-centric ADAM network.

Coasys whitepaper 45

Funding Campaign
In order to support the development and growth of the Synergy Engine

and ADAM, we are launching a funding campaign. This campaign will involve
a pre-sale of an ERC-20 Synergy Token, which will be swapped on a 1:1 basis
with SynergyFuel once the Synergy Engine v1.0 goes live (test and beta
networks might be test-run with the ERC-20 Synergy Token before the swap).

Phases of the Pre-sale

The pre-sale of SynergyFuel will occur in several phases:

1. SAFT with Discount: In the first phase, we will conduct a pre-sale
of Simple Agreement for Future Tokens (SAFT) with a discount, for up to
€3 million. It starts on September 12th and ends December 15th 2023 or
when the goal of €3 million is reached.
2. ERC-20 Launch: In the second phase, alongside the launch of the

ERC-20 Synergy Token and the release of an early test-net, an additional
€6 million worth of tokens will be made available without discount.
3. Dynamic Release: The third phase will involve a dynamic release of

tokens based on certain factors, which will be disclosed closer to the
time of the phase. We aim at timing the start of phase 2 concurrently
with the release of an early test-net, in which the ERC-20 token can
already be used to gain access to test tokens. Actual usage data of that
test-net might indicate that the release of more tokens might be
justified in order to approach the supply dynamics of the full mutual-
credit implementation of SynergyFuel.

Supply and Distribution

The Synergy Token will be issued with an absolute maximum supply of 2
billion tokens. This figure has been chosen to ensure ample liquidity in the
system and to allow for micro-transactions, such as hops, which we aim to be
valued around €0.01 each. Those 2 billion include the upper cap for the
dynamic and potential supply of phase 3—it might be less.

Coasys whitepaper 46

The initial two phases of the pre-sale will aim to raise a total of €9 million:

1. Phase One - SAFT with Discount: The first phase aims to raise €3
million. Tokens will be sold at a discount, starting with 25%, effectively
pricing each token at €0.0075. Thus, we will distribute a maximum of
400 million tokens during this phase, to be released upon TGE with no
vesting requirements. The discount will decrease over time, dropping to
20% starting November 1st 2023, and dropping a second time to 15% on
December 1st 2023.
2. Phase Two - ERC-20 Launch: In the second phase, we aim to raise

an additional €6 million. The token price will be set at €0.01, the
nominal price, leading to the distribution of another 600 million
tokens.

In total, these two phases will distribute 1 billion tokens, which is 50%
of the maximum total supply.

3. Dynamic Release: Depending on usage statistics and other
performance indicators yet to be defined, a variable amount of tokens,
but no more than 556.8 million additional units, might be released for
sale during the third phase.

Together, we get the following overview:

Coasys whitepaper 47

*given maxed-out Dynamic Release

Earning Back Negative Balance

When transitioning from ERC-20 token to Holochain-based SynergyFuel,
Coasys will accrue a large negative balance in this mutual-credit currency as
it has to go negative in order to sent out currency units during the swap.
Coasys intends to earn back this debt by taking part in the ecosystem as a
data provider. Since the credit-limit granted to Coasys (within the mutual-
credit currency implementation) during swap is a needed exception,
currency units earned back will effectively be taken out of supply, i.e. this will
be equivalent to the burning of tokens. This will be a strategic tool to ease
the transition during a phase in which the ecosystem and other data
providing agents and apps are still being built-out.

Allocation of Funds

The funds raised from the token sale will be used for the following
purposes:

• 30% Building the SynergyFuel currency and the Synergy Engine.
• 25% Further development of the ADAM layer.
• 25% Development of ADAM apps (Flux and more).
• 20% Growth and expansion of the ADAM ecosystem

(documentation, education, events).

Bucket Ratio* Synergy Tokens

Phase One - SAFT with Discount 20.00% 400M

Phase Two - ERC-20 Launch 30.00% 600M

Dynamic Release 27.84% 556.8M

Team 15.00% 300M

Advisors 5.00% 100M

Previous Investors 2.16% 43.125M

Coasys whitepaper 48

Through this funding campaign, we aim to accelerate the development
of the Synergy Engine and ADAM, bringing about a new era of collective
sense-making on the internet.

Coasys whitepaper 49

Milestones
Our road map is carefully designed to ensure that each step forward

leads to a meaningful development in the project and adds value to our
community. Here's an outline of the major milestones we plan to achieve:

1. Completing ADAM Documentation: The first step is to complete and
polish the ADAM documentation. This will pave the way for more ADAM
applications to be built by giving developers the knowledge they need to
create innovative and useful apps.

2. ADAM Hosting and Remote Access: To close a significant UX gap, we
will build scripts and UI flows to host an ADAM agent on any machine,
access your ADAM agent remotely from another machine, as well as
remove/revoke access. This allows a user to access ADAM applications at
all times, via proxy from any device.

3. Making Flux Production Ready: We intend to make Flux production-
ready and transition our team's operations from Discord to Flux. This will
enable us to constantly identify and resolve any bugs or issues in Flux
and/or ADAM, ensuring the platform's stability and reliability.

4. Social Organism Implementation in ADAM: The next significant task
is to implement Social Organisms in ADAM. This represents the final piece
of the ADAM ontology puzzle, marking a significant development
milestone, allowing Flux and other apps to map organisational hierarchies
within the ADAM layer.

5. ADAM AI: We plan to train small-scale Large Language Models (LLMs)
on local ADAM perspective data and Social DNA. This step will enable
natural language interfaces for all local ADAM data, significantly improving
usability and accessibility.

6. Coasys App: We will develop the Coasys app, a general-purpose
ADAM app and browser for Neighbourhoods and Social Organism. This
will serve as the central hub for users to interact with the broader
ecosystem.

7. Synergy Engine MVP: The next step involves integrating query
distribution, relaying, and automatic answering into the ADAM runtime.
Concurrently, we plan to build a centralized mock version of SynergyFuel,
enabling us to conduct early full integration tests.

Coasys whitepaper 50

8. Introduce ERC-20 SynergyToken: We plan to introduce the ERC-20
SynergyToken and commence the second phase of the presale. The
Synergy Engine MVP will provide utility for the ERC-20 token from day one
by enabling staking of the token to retrieve test tokens from the
centralized mock version of SynergyFuel.

9. Build Partnerships: As the ecosystem grows, we aim to build
partnerships with projects that are building ADAM apps and specialized
Synergy Engine query DNA for specific use-cases. These partnerships will
help diversify the ecosystem and introduce innovative solutions to our
users.

10. Implement full Holochain based SynergyFuel: The final milestone is
the full implementation of the Holochain-based mutual-credit currency
SynergyFuel with Social DNA based vaults. We plan to conduct rigorous
testing and code auditing before transferring the ERC-20 token to
SynergyFuel, effectively completing the scope of this campaign.

Each of these milestones is a stepping stone towards our ultimate vision
of a self-sustaining, agent-centric, and decentralised knowledge ecosystem.
We look forward to your support as we embark on this exciting journey.

Coasys whitepaper 51

Financial Sustainability
Coasys is aware of and interested in exploring various income streams as

the ADAM network develops in order to sustain the development of the
ADAM layer, security components, and the Coasys application. We intend to
develop a revenue model based on one or more of the following potential
income streams:

1. Fees on Synergy Engine Queries: When a user writes a query for the
Synergy Engine, they would be making a micro-transaction that
compensates the other agents that pass along their query and to any
agent that resolves it. Coasys could simply take a small percentage of
SynergyFuel as a query fee for all queries that are resolved.

2. Centralized ADAM Agent Hosting Services: One of the major UX
challenges in the distributed, p2p internet space is the hosting of
applications and data in such a way that allows easy and always-available
access to the user, while retaining full sovereignty and ownership of data.
ADAM’s agent-centric architecture allows a user to host their ADAM agent
on any device. Coasys will build tools to support remote access to ADAM
and the possibility of providing a centralized hosting service, allowing the
convenience of centralized hosting while retaining the autonomy over
one’s data.

3. Application Marketplace: We anticipate a fast-growing interest from
developers in creating new ADAM applications, as the process to do so is
extremely efficient with reusable components and a decoupled front/
back-end. We hope to facilitate an open database of applications that
anyone can use; however, doing so may create a challenge for users in
knowing which applications are safe, secure, and effective. Coasys will
likely provide support in identifying ADAM applications that meet a certain
criteria for being considered safe and secure, as well as UI for a users to
browse, sort, and find new applications. We see various income
opportunities for Coasys in facilitating this process.

Coasys whitepaper 52

Company / Team
The Coasys project is stewarded by a non-profit DAO LLC, incorporated

in the Republic of Marshall Islands. This structure provides us with the
necessary flexibility to work in a rapidly evolving technological and
regulatory environment, allows opportunities of co-governance, and ensures
our activities are fully aligned with our mission.

We believe that the Synergy Engine and the ADAM network are valuable
public goods that can transform the information ecosystem, and they should
be maintained as such. A non-profit would ensure that these resources are
managed for the benefit of all users, rather than for private gain. Our
structure as a DAO also offers a clear path to decentralizing the governance
of these assets more and more over time. By putting the maintenance and
development of the ADAM layer and the Synergy Engine in the hands of a
non-profit DAO, we can ensure that our technology stays true to its mission of
fostering a healthier and more trustworthy information ecosystem.

The DAO smart contract is deployed on the Ethereum blockchain at
address: 0x7dF4fD70a2aD7c520f1d3c056D07d83c3442cF96 (ENS:
coasys.dao.eth). Ultimately, the goal is to transition our non-profit DAO LLC’s
infrastructure from an Ethereum based DAO over to an ADAM Social
Organism as soon as the implementation is finished and tested.

Team members
(Alphabetically)

Moritz Bierling

Universal amateur, network operator, and technician of the soul. 9+ years
living and working between domains, industries, and organizations. Writes,
speaks, programs, organizes, facilitates, bootstraps, supports, and so much
more.

Dora Czovek

Administrative operator with 15+ years of experience.

Coasys whitepaper 53

Bård Hovde

Senior frontend engineer with 13+ years of experience. Previously
worked for some of Norway's largest companies.

Nicolas Luck

Co-founder and Chief Architect of Coasys and ADAM. Senior developer
with 20+ years of experience. Former lead developer of Holochain core.
Developer at Holo Ltd., leading the implementation of their €20m ICO.

Tomis Parker

Co-founded the Agile Learning Centers, a self-directed education
framework used by 70+ communities worldwide. Partner and Facilitator with
Grow Dialogue, an organizational culture consulting firm serving Fortune 100
companies.

Joshua Parkin

Co-founder of Coasys, ADAM, and Flux. Senior developer with 9+ years
of experience. Previously CTO at an AI company.

Fayeed Pawaskar

Senior level frontend engineer with 5+ years of experience in web and
mobile development.

Leif Riksheim

Leads Coasys frontend development. Senior engineer with 9+ years of
experience. Previously worked for some of Norway's largest companies.

Eric Yang

Co-founder of Flux and leads Coasys strategic partnerships and
fundraising efforts. 7+ years of experience at the intersection of product
design, finance, and engineering.

Coasys whitepaper 54

Advisors
(Alphabetically)

David Atkinson

Arthur Brock

Andrea Harding

Bret Warshawsky

Harlan Wood

Partners

Cacoon (https://www.thecacoon.com/)

Corenexus (https://corenexus.is/)

Holo Ltd. (https://holo.host/)

Symphonics (https://www.symphonics.life/)

TrustGraph (https://trustgraph.net/)

we { collective } (https://weco.io/)

Coasys whitepaper 55

https://www.thecacoon.com/
https://corenexus.is/
https://holo.host/
https://www.symphonics.life/
https://trustgraph.net/
https://weco.io/

Acknowledgements

The work presented in this paper draws from previous and related work
and conversations with other visionary creators in the field. These key
influences include, but are not limited to, knowledge sharing between the
respective teams or team members listed below.

Arthur Brock’s and Eric Harris-Braun’s work on Holochain forms a basis
in ontological approach but also as a pragmatic enabler of the concepts and
solutions that are in many cases built/designed on-top and around of
Holochain and its paradigm-shifting approach. Also their work on CEPTR and
a protocol-for-protocols is somewhat related to ADAM’s positioning as a
meta-ontology.

Symphonic’s, and esp. Andrea Harding’s, conceptualisations about
Social Organisms and “Organomics” have been a guiding framework and
targeted application for the technological infrastructure described by ADAM
and the Synergy Engine. Bret Warshawsky has played a vital role in
connecting this work with other related projects and providing crucial
inspiration by pointing out synergistic associations.

Many conversations and collaborations between Chris Larcombe and
Nicolas Luck in the years between 2016 and 2019, in the context of the
projects Noomap and h4ome have laid important groundwork and framing
for an approach that goes beyond apps and allows for a different kind of data
and app architecture which doesn’t foster or create data silos. In several
ways, ADAM is a rethinking of those shared ideas from a purely agent-centric,
Holochain based approach. Chris is continuing to work on related solutions
in the context of his project called HoloWeb.

The Neighbourhoods project is approaching a similar shift of replacing
apps with social spaces, i.e. Neighbourhoods. The usage of the term
“Neighbourhoods” in ADAM (for mutably shared perspectives) goes back to
Siddharth Sthalekar’s generic definition of this term as “generic tech &
specific culture”, as an antipode to the common Web 2.0 pattern of using the
same app for many different cultures “specific tech & generic culture” - of
which ADAM’s shared perspectives is a specific implementation of.

Coasys whitepaper 56

https://ceptr.org/

